
Department of CSE Page 1 of 63

 UNIT - V GUI Programming with Swing

Introduction

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used to create

window-based applications. It is built on the top of AWT (Abstract Windowing Toolkit) API

and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight components.

The javax.swing package provides classes for java swing API such as JButton, JTextField,

JTextArea, JRadioButton, JCheckbox, JMenu, JColorChooser etc.

limitations of AWT, MVC architecture

Limitations of AWT: The AWT defines a basic set of controls, windows, and dialog boxes

that support a usable, but limited graphical interface. One reason for the limited nature of the

AWT is that it translates its various visual components into their corresponding, platform-

specific equivalents or peers. This means that the look and feel of a component is defined by

the platform, not by java. Because the AWT components use native code resources, they are

referred to as heavy weight. The use of native peers led to several problems. First, because of

variations between operating systems, a component might look, or even act, differently on

different platforms. This variability threatened java’s philosophy: write once, run anywhere.

Second, the look and feel of each component was fixed and could not be changed. Third, the

use of heavyweight components caused some frustrating restrictions. Due to these limitations

Swing came and was integrated to java. Swing is built on the AWT. Two key Swing features

are: Swing components are light weight, Swing supports a pluggable look and feel.

The MVC Connection:

In general, a visual component is a composite of three distinct aspects:

• The way that the component looks when rendered on the screen

• The way that the component reacts to the user

 • The state information associated with the component.

The Model-View-Controller architecture is successful for all these.

Components and Containers:

 A component is an independent visual control, such as a push button. A container holds a

group of components. Furthermore in order for a component to be displayed it must be held

with in a container. Swing components are derived from JComponent class. Note that all

component classes begin with the letter J. For example a label is JLabel, a button is JButton

Department of CSE Page 2 of 63

etc. Swing defines two types of containers. The first are top level containers: JFrame,

JApplet, JWindow, and JDialog. These containers do not inherit JComponent. They do,

however inherit the AWT classes Container and Component. Unlike Swing’s other

components which are heavy weight, the top level containers are heavy weight. The second

type of containers are light weight inherit from JComponent. Example- Jpanel.

Java LayoutManagers

The LayoutManagers are used to arrange components in a particular manner. The Java

LayoutManagers facilitates us to control the positioning and size of the components in GUI

forms. LayoutManager is an interface that is implemented by all the classes of layout

managers. There are the following classes that represent the layout managers:

1. java.awt.BorderLayout

2. java.awt.FlowLayout

3. java.awt.GridLayout

4. java.awt.CardLayout

5. java.awt.GridBagLayout

6. javax.swing.BoxLayout

7. javax.swing.GroupLayout

8. javax.swing.ScrollPaneLayout

9. javax.swing.SpringLayout etc.

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north, south, east, west,

and center. Each region (area) may contain one component only. It is the default layout of a

frame or window. The BorderLayout provides five constants for each region:

1. public static final int NORTH

2. public static final int SOUTH

3. public static final int EAST

4. public static final int WEST

5. public static final int CENTER

Constructors of BorderLayout class:

Department of CSE Page 3 of 63

o BorderLayout(): creates a border layout but with no gaps between the components.

o BorderLayout(int hgap, int vgap): creates a border layout with the given horizontal

and vertical gaps between the components.

Example of BorderLayout class: Using BorderLayout() constructor

FileName: Border.java

import java.awt.*;

import javax.swing.*;

public class Border

{

JFrame f;

Border()

{

 f = new JFrame();

 // creating buttons

 JButton b1 = new JButton("NORTH");; // the button will be labeled as NORTH

 JButton b2 = new JButton("SOUTH");; // the button will be labeled as SOUTH

 JButton b3 = new JButton("EAST");; // the button will be labeled as EAST

 JButton b4 = new JButton("WEST");; // the button will be labeled as WEST

 JButton b5 = new JButton("CENTER");; // the button will be labeled as CENTER

 f.add(b1, BorderLayout.NORTH); // b1 will be placed in the North Direction

 f.add(b2, BorderLayout.SOUTH); // b2 will be placed in the South Direction

 f.add(b3, BorderLayout.EAST); // b2 will be placed in the East Direction

 f.add(b4, BorderLayout.WEST); // b2 will be placed in the West Direction

 f.add(b5, BorderLayout.CENTER); // b2 will be placed in the Center

 f.setSize(300, 300);

 f.setVisible(true);

}

Department of CSE Page 4 of 63

public static void main(String[] args) {

 new Border();

}

}

Output:

2.2M

PlayStation's New Tiered Subscription Service Available in the US

Example of BorderLayout class: Using BorderLayout(int hgap, int vgap) constructor

The following example inserts horizontal and vertical gaps between buttons using the

parameterized constructor BorderLayout(int hgap, int gap)

FileName: BorderLayoutExample.java

// import statement

import java.awt.*;

import javax.swing.*;

public class BorderLayoutExample

{

JFrame jframe;

// constructor

Department of CSE Page 5 of 63

BorderLayoutExample()

{

 // creating a Frame

 jframe = new JFrame();

 // create buttons

 JButton btn1 = new JButton("NORTH");

 JButton btn2 = new JButton("SOUTH");

 JButton btn3 = new JButton("EAST");

 JButton btn4 = new JButton("WEST");

 JButton btn5 = new JButton("CENTER");

 // creating an object of the BorderLayout class using

 // the parameterized constructor where the horizontal gap is 20

 // and vertical gap is 15. The gap will be evident when buttons are placed

 // in the frame

 jframe.setLayout(new BorderLayout(20, 15));

 jframe.add(btn1, BorderLayout.NORTH);

 jframe.add(btn2, BorderLayout.SOUTH);

 jframe.add(btn3, BorderLayout.EAST);

 jframe.add(btn4, BorderLayout.WEST);

 jframe.add(btn5, BorderLayout.CENTER);

 jframe.setSize(300,300);

 jframe.setVisible(true);

}

// main method

public static void main(String argvs[]) {

 new BorderLayoutExample();

}

}

Output:

Department of CSE Page 6 of 63

Java BorderLayout: Without Specifying Region

The add() method of the JFrame class can work even when we do not specify the region. In

such a case, only the latest component added is shown in the frame, and all the components

added previously get discarded. The latest component covers the whole area. The following

example shows the same.

FileName: BorderLayoutWithoutRegionExample.java

// import statements

import java.awt.*;

import javax.swing.*;

public class BorderLayoutWithoutRegionExample {

JFrame jframe;

// constructor

BorderLayoutWithoutRegionExample()

{

Department of CSE Page 7 of 63

 jframe = new JFrame();

 JButton btn1 = new JButton("NORTH");

 JButton btn2 = new JButton("SOUTH");

 JButton btn3 = new JButton("EAST");

 JButton btn4 = new JButton("WEST");

 JButton btn5 = new JButton("CENTER");

 // horizontal gap is 7, and the vertical gap is 7

 // Since region is not specified, the gaps are of no use

 jframe.setLayout(new BorderLayout(7, 7));

 // each button covers the whole area

 // however, the btn5 is the latest button

 // that is added to the frame; therefore, btn5

 // is shown

 jframe.add(btn1);

 jframe.add(btn2);

 jframe.add(btn3);

 jframe.add(btn4);

 jframe.add(btn5);

 jframe.setSize(300,300);

 jframe.setVisible(true);

}

// main method

public static void main(String argvs[])

{

 new BorderLayoutWithoutRegionExample();

}

}

Department of CSE Page 8 of 63

Output:

Java GridLayout

The Java GridLayout class is used to arrange the components in a rectangular grid. One

component is displayed in each rectangle.

Constructors of GridLayout class

1. GridLayout(): creates a grid layout with one column per component in a row.

2. GridLayout(int rows, int columns): creates a grid layout with the given rows and

columns but no gaps between the components.

3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with

the given rows and columns along with given horizontal and vertical gaps.

Example of GridLayout class: Using GridLayout() Constructor

The GridLayout() constructor creates only one row. The following example shows the usage

of the parameterless constructor.

FileName: GridLayoutExample.java

// import statements

import java.awt.*;

import javax.swing.*;

public class GridLayoutExample

{

JFrame frameObj;

// constructor

GridLayoutExample()

{

https://www.javatpoint.com/GridLayout
https://www.javatpoint.com/GridLayout
https://www.javatpoint.com/GridLayout
https://www.javatpoint.com/GridLayout
https://www.javatpoint.com/GridLayout
https://www.javatpoint.com/GridLayout

Department of CSE Page 9 of 63

frameObj = new JFrame();

// creating 9 buttons

JButton btn1 = new JButton("1");

JButton btn2 = new JButton("2");

JButton btn3 = new JButton("3");

JButton btn4 = new JButton("4");

JButton btn5 = new JButton("5");

JButton btn6 = new JButton("6");

JButton btn7 = new JButton("7");

JButton btn8 = new JButton("8");

JButton btn9 = new JButton("9");

// adding buttons to the frame

// since, we are using the parameterless constructor, therfore;

// the number of columns is equal to the number of buttons we

// are adding to the frame. The row count remains one.

frameObj.add(btn1); frameObj.add(btn2); frameObj.add(btn3);

frameObj.add(btn4); frameObj.add(btn5); frameObj.add(btn6);

frameObj.add(btn7); frameObj.add(btn8); frameObj.add(btn9);

// setting the grid layout using the parameterless constructor

frameObj.setLayout(new GridLayout());

frameObj.setSize(300, 300);

frameObj.setVisible(true);

}

// main method

public static void main(String argvs[])

{

new GridLayoutExample();

Department of CSE Page 10 of 63

}

}

Output:

53.8M

872

Hello Java Program for Beginners

Java FlowLayout

The Java FlowLayout class is used to arrange the components in a line, one after another (in a

flow). It is the default layout of the applet or panel.

Fields of FlowLayout class

1. public static final int LEFT

Department of CSE Page 11 of 63

2. public static final int RIGHT

3. public static final int CENTER

4. public static final int LEADING

5. public static final int TRAILING

Constructors of FlowLayout class

1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit

horizontal and vertical gap.

2. FlowLayout(int align): creates a flow layout with the given alignment and a default

5 unit horizontal and vertical gap.

3. FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given

alignment and the given horizontal and vertical gap.

Example of FlowLayout class: Using FlowLayout() constructor

FileName: FlowLayoutExample.java

// import statements

import java.awt.*;

import javax.swing.*;

public class FlowLayoutExample

{

JFrame frameObj;

// constructor

FlowLayoutExample()

{

https://www.javatpoint.com/FlowLayout
https://www.javatpoint.com/FlowLayout
https://www.javatpoint.com/FlowLayout
https://www.javatpoint.com/FlowLayout
https://www.javatpoint.com/FlowLayout
https://www.javatpoint.com/FlowLayout

Department of CSE Page 12 of 63

 // creating a frame object

 frameObj = new JFrame();

 // creating the buttons

 JButton b1 = new JButton("1");

 JButton b2 = new JButton("2");

 JButton b3 = new JButton("3");

 JButton b4 = new JButton("4");

 JButton b5 = new JButton("5");

 JButton b6 = new JButton("6");

 JButton b7 = new JButton("7");

 JButton b8 = new JButton("8");

 JButton b9 = new JButton("9");

 JButton b10 = new JButton("10");

 // adding the buttons to frame

 frameObj.add(b1); frameObj.add(b2); frameObj.add(b3); frameObj.add(b4);

 frameObj.add(b5); frameObj.add(b6); frameObj.add(b7); frameObj.add(8);

 frameObj.add(b9); frameObj.add(b10);

 // parameter less constructor is used

 // therefore, alignment is center

 // horizontal as well as the vertical gap is 5 units.

 frameObj.setLayout(new FlowLayout());

 frameObj.setSize(300, 300);

 frameObj.setVisible(true);

}

// main method

public static void main(String argvs[])

{

Department of CSE Page 13 of 63

 new FlowLayoutExample();

}

}

Output:

Java CardLayout

The Java CardLayout class manages the components in such a manner that only one

component is visible at a time. It treats each component as a card that is why it is known as

CardLayout.

Constructors of CardLayout Class

1. CardLayout(): creates a card layout with zero horizontal and vertical gap.

2. CardLayout(int hgap, int vgap): creates a card layout with the given horizontal and

vertical gap.

Commonly Used Methods of CardLayout Class

Department of CSE Page 14 of 63

o public void next(Container parent): is used to flip to the next card of the given

container.

o public void previous(Container parent): is used to flip to the previous card of the

given container.

o public void first(Container parent): is used to flip to the first card of the given

container.

o public void last(Container parent): is used to flip to the last card of the given

container.

o public void show(Container parent, String name): is used to flip to the specified

card with the given name.

Example of CardLayout Class: Using Default Constructor

The following program uses the next() method to move to the next card of the container.

FileName: CardLayoutExample1.java

// import statements

import java.awt.*;

import javax.swing.*;

import java.awt.event.*;

public class CardLayoutExample1 extends JFrame implements ActionListener

{

CardLayout crd;

// button variables to hold the references of buttons

JButton btn1, btn2, btn3;

Container cPane;

// constructor of the class

CardLayoutExample1()

{

Department of CSE Page 15 of 63

cPane = getContentPane();

//default constructor used

// therefore, components will

// cover the whole area

crd = new CardLayout();

cPane.setLayout(crd);

// creating the buttons

btn1 = new JButton("Apple");

btn2 = new JButton("Boy");

btn3 = new JButton("Cat");

// adding listeners to it

btn1.addActionListener(this);

btn2.addActionListener(this);

btn3.addActionListener(this);

cPane.add("a", btn1); // first card is the button btn1

cPane.add("b", btn2); // first card is the button btn2

cPane.add("c", btn3); // first card is the button btn3

}

public void actionPerformed(ActionEvent e)

{

// Upon clicking the button, the next card of the container is shown

// after the last card, again, the first card of the container is shown upon cliking

crd.next(cPane);

}

// main method

Department of CSE Page 16 of 63

public static void main(String argvs[])

{

// creating an object of the class CardLayoutExample1

CardLayoutExample1 crdl = new CardLayoutExample1();

// size is 300 * 300

crdl.setSize(300, 300);

crdl.setVisible(true);

crdl.setDefaultCloseOperation(EXIT_ON_CLOSE);

}

}

Output:

00:00/05:19

When the button named apple is clicked, we get

Department of CSE Page 17 of 63

When the boy button is clicked, we get

Again, we reach the first card of the container if the cat button is clicked, and the cycle

continues.

Department of CSE Page 18 of 63

Java GridBagLayout

The Java GridBagLayout class is used to align components vertically, horizontally or along

their baseline.

Department of CSE Page 19 of 63

Modifier and Type Field Description

double[] columnWeights It is used to hold the overrides to the

column weights.

int[] columnWidths It is used to hold the overrides to the

column minimum width.

protected

Hashtable<Component,GridBagConstraints>

comptable It is used to maintains the association

between a component and its gridbag

constraints.

protected GridBagConstraints defaultConstraints It is used to hold a gridbag constraints

instance containing the default values.

protected GridBagLayoutInfo layoutInfo It is used to hold the layout information for

the gridbag.

protected static int MAXGRIDSIZE No longer in use just for backward

compatibility

protected static int MINSIZE It is smallest grid that can be laid out by the

grid bag layout.

protected static int PREFERREDSIZE It is preferred grid size that can be laid out

by the grid bag layout.

int[] rowHeights It is used to hold the overrides to the row

minimum heights.

double[] rowWeights It is used to hold the overrides to the row

weights.

Department of CSE Page 20 of 63

Modifier and Type Method Description

Void addLayoutComponent(Component comp,

Object constraints)

It adds specified component to the layout,

using the specified constraints object.

Void addLayoutComponent(String name,

Component comp)

It has no effect, since this layout manager

does not use a per-component string.

protected void adjustForGravity(GridBagConstraints

constraints, Rectangle r)

It adjusts the x, y, width, and height fields

to the correct values depending on the

constraint geometry and pads.

protected void AdjustForGravity(GridBagConstraints

constraints, Rectangle r)

This method is for backwards

compatibility only

protected void arrangeGrid(Container parent) Lays out the grid.

protected void ArrangeGrid(Container parent) This method is obsolete and supplied for

backwards compatibility

GridBagConstraints getConstraints(Component comp) It is for getting the constraints for the

specified component.

Float getLayoutAlignmentX(Container parent) It returns the alignment along the x axis.

Float getLayoutAlignmentY(Container parent) It returns the alignment along the y axis.

int[][] getLayoutDimensions() It determines column widths and row

heights for the layout grid.

protected

GridBagLayoutInfo

getLayoutInfo(Container parent, int sizeflag) This method is obsolete and supplied for

backwards compatibility.

protected

GridBagLayoutInfo

GetLayoutInfo(Container parent, int sizeflag) This method is obsolete and supplied for

backwards compatibility.

Point getLayoutOrigin() It determines the origin of the layout area,

in the graphics coordinate space of the

target container.

Department of CSE Page 21 of 63

The components may not be of the same size. Each GridBagLayout object maintains a

dynamic, rectangular grid of cells. Each component occupies one or more cells known as its

display area. Each component associates an instance of GridBagConstraints. With the help of

the constraints object, we arrange the component's display area on the grid. The

GridBagLayout manages each component's minimum and preferred sizes in order to

determine the component's size. GridBagLayout components are also arranged in the

rectangular grid but can have many different sizes and can occupy multiple rows or columns.

Constructor

GridBagLayout(): The parameterless constructor is used to create a grid bag layout

manager.

GridBagLayout Methods

Example 1

FileName: GridBagLayoutExample.java

37.7M

662

History of Java

import java.awt.Button;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

double[][] getLayoutWeights() It determines the weights of the layout

grid's columns and rows.

protected Dimension getMinSize(Container parent,

GridBagLayoutInfo info)

It figures out the minimum size of the

master based on the information from

getLayoutInfo.

protected Dimension GetMinSize(Container parent,

GridBagLayoutInfo info)

This method is obsolete and supplied for

backwards compatibility only

https://www.javatpoint.com/java-gridbaglayout
https://www.javatpoint.com/java-gridbaglayout
https://www.javatpoint.com/java-gridbaglayout
https://www.javatpoint.com/java-gridbaglayout
https://www.javatpoint.com/java-gridbaglayout
https://www.javatpoint.com/java-gridbaglayout

Department of CSE Page 22 of 63

import javax.swing.*;

public class GridBagLayoutExample extends JFrame{

 public static void main(String[] args) {

 GridBagLayoutExample a = new GridBagLayoutExample();

 }

 public GridBagLayoutExample() {

 GridBagLayoutgrid = new GridBagLayout();

 GridBagConstraints gbc = new GridBagConstraints();

 setLayout(grid);

 setTitle("GridBag Layout Example");

 GridBagLayout layout = new GridBagLayout();

 this.setLayout(layout);

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.gridx = 0;

 gbc.gridy = 0;

 this.add(new Button("Button One"), gbc);

 gbc.gridx = 1;

 gbc.gridy = 0;

 this.add(new Button("Button two"), gbc);

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.ipady = 20;

 gbc.gridx = 0;

 gbc.gridy = 1;

 this.add(new Button("Button Three"), gbc);

 gbc.gridx = 1;

 gbc.gridy = 1;

 this.add(new Button("Button Four"), gbc);

 gbc.gridx = 0;

 gbc.gridy = 2;

 gbc.fill = GridBagConstraints.HORIZONTAL;

 gbc.gridwidth = 2;

 this.add(new Button("Button Five"), gbc);

Department of CSE Page 23 of 63

 setSize(300, 300);

 setPreferredSize(getSize());

 setVisible(true);

 setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

}

Output:

Event Handling

Delegation Event Model in Java

The Delegation Event model is defined to handle events in GUI programming languages

. The GUI

stands for Graphical User Interface, where a user graphically/visually interacts with the

system.

The GUI programming is inherently event-driven; whenever a user initiates an activity such

as a mouse activity, clicks, scrolling, etc., each is known as an event that is mapped to a code

to respond to functionality to the user. This is known as event handling.

https://www.javatpoint.com/programming-language
https://www.javatpoint.com/programming-language
https://www.javatpoint.com/gui-full-form
https://www.javatpoint.com/gui-full-form

Department of CSE Page 24 of 63

In this section, we will discuss event processing and how to implement the delegation event

model in Java

. We will also discuss the different components of an Event Model.

Event Processing in Java

Java support event processing since Java 1.0. It provides support for AWT (Abstract

Window Toolkit)

, which is an API used to develop the Desktop application. In Java 1.0, the AWT was based

on inheritance. To catch and process GUI events for a program, it should hold subclass GUI

components and override action() or handleEvent() methods. The below image demonstrates

the event processing.

But, the modern approach for event processing is based on the Delegation Model. It defines a

standard and compatible mechanism to generate and process events. In this model, a source

generates an event and forwards it to one or more listeners. The listener waits until it receives

an event. Once it receives the event, it is processed by the listener and returns it. The UI

elements are able to delegate the processing of an event to a separate function.

The key advantage of the Delegation Event Model is that the application logic is completely

separated from the interface logic.

In this model, the listener must be connected with a source to receive the event notifications.

Thus, the events will only be received by the listeners who wish to receive them. So, this

approach is more convenient than the inheritance-based event model (in Java 1.0).

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-awt
https://www.javatpoint.com/java-awt

Department of CSE Page 25 of 63

In the older model, an event was propagated up the containment until a component was

handled. This needed components to receive events that were not processed, and it took lots

of time. The Delegation Event model overcame this issue.

Basically, an Event Model is based on the following three components:

o Events

o Events Sources

o Events Listeners

Events

The Events are the objects that define state change in a source. An event can be generated as

a reaction of a user while interacting with GUI elements. Some of the event generation

activities are moving the mouse pointer, clicking on a button, pressing the keyboard key,

selecting an item from the list, and so on. We can also consider many other user operations as

events.

The Events may also occur that may be not related to user interaction, such as a timer expires,

counter exceeded, system failures, or a task is completed, etc. We can define events for any

of the applied actions.

Event Sources

A source is an object that causes and generates an event. It generates an event when the

internal state of the object is changed. The sources are allowed to generate several different

types of events.

A source must register a listener to receive notifications for a specific event. Each event

contains its registration method. Below is an example:

1. public void addTypeListener (TypeListener e1)

From the above syntax, the Type is the name of the event, and e1 is a reference to the event

listener. For example, for a keyboard event listener, the method will be called

as addKeyListener(). For the mouse event listener, the method will be called

as addMouseMotionListener(). When an event is triggered using the respected source, all

the events will be notified to registered listeners and receive the event object. This process is

known as event multicasting. In few cases, the event notification will only be sent to listeners

that register to receive them.

Some listeners allow only one listener to register. Below is an example:

https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java

Department of CSE Page 26 of 63

1. public void addTypeListener(TypeListener e2) throws java.util.TooManyListenersException

From the above syntax, the Type is the name of the event, and e2 is the event listener's

reference. When the specified event occurs, it will be notified to the registered listener. This

process is known as unicasting events.

A source should contain a method that unregisters a specific type of event from the listener if

not needed. Below is an example of the method that will remove the event from the listener.

1. public void removeTypeListener(TypeListener e2?)

From the above syntax, the Type is an event name, and e2 is the reference of the listener. For

example, to remove the keyboard listener, the removeKeyListener() method will be called.

The source provides the methods to add or remove listeners that generate the events. For

example, the Component class contains the methods to operate on the different types of

events, such as adding or removing them from the listener.

Event Listeners

An event listener is an object that is invoked when an event triggers. The listeners require two

things; first, it must be registered with a source; however, it can be registered with several

resources to receive notification about the events. Second, it must implement the methods to

receive and process the received notifications.

The methods that deal with the events are defined in a set of interfaces. These interfaces can

be found in the java.awt.event package.

For example, the MouseMotionListener interface provides two methods when the mouse is

dragged and moved. Any object can receive and process these events if it implements the

MouseMotionListener interface.

Types of Events

The events are categories into the following two categories:

The Foreground Events:

https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java
https://www.javatpoint.com/delegation-event-model-in-java

Department of CSE Page 27 of 63

The foreground events are those events that require direct interaction of the user. These types

of events are generated as a result of user interaction with the GUI component. For example,

clicking on a button, mouse movement, pressing a keyboard key, selecting an option from the

list, etc.

The Background Events :

The Background events are those events that result from the interaction of the end-user. For

example, an Operating system interrupts system failure (Hardware or Software).

To handle these events, we need an event handling mechanism that provides control over the

events and responses.

Handling Mouse Events

Mouse events occur with mouse movements in forms and controls. Following are the various

mouse events related with a Control class −

 MouseDown − it occurs when a mouse button is pressed

 MouseEnter − it occurs when the mouse pointer enters the control

 MouseHover − it occurs when the mouse pointer hovers over the control

 MouseLeave − it occurs when the mouse pointer leaves the control

 MouseMove − it occurs when the mouse pointer moves over the control

 MouseUp − it occurs when the mouse pointer is over the control and the mouse

button is released

 MouseWheel − it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties −

 Buttons − indicates the mouse button pressed

 Clicks − indicates the number of clicks

 Delta − indicates the number of detents the mouse wheel rotated

 X − indicates the x-coordinate of mouse click

 Y − indicates the y-coordinate of mouse click

Example

Following is an example, which shows how to handle mouse events. Take the following steps

−

 Add three labels, three text boxes and a button control in the form.

 Change the text properties of the labels to - Customer ID, Name and Address,

respectively.

 Change the name properties of the text boxes to txtID, txtName and txtAddress,

respectively.

 Change the text property of the button to 'Submit'.

 Add the following code in the code editor window −

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ' Set the caption bar text of the form.

 Me.Text = "tutorialspont.com"

 End Sub

Department of CSE Page 28 of 63

 Private Sub txtID_MouseEnter(sender As Object, e As EventArgs)_

 Handles txtID.MouseEnter

 'code for handling mouse enter on ID textbox

 txtID.BackColor = Color.CornflowerBlue

 txtID.ForeColor = Color.White

 End Sub

 Private Sub txtID_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtID.MouseLeave

 'code for handling mouse leave on ID textbox

 txtID.BackColor = Color.White

 txtID.ForeColor = Color.Blue

 End Sub

 Private Sub txtName_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtName.MouseEnter

 'code for handling mouse enter on Name textbox

 txtName.BackColor = Color.CornflowerBlue

 txtName.ForeColor = Color.White

 End Sub

 Private Sub txtName_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtName.MouseLeave

 'code for handling mouse leave on Name textbox

 txtName.BackColor = Color.White

 txtName.ForeColor = Color.Blue

 End Sub

 Private Sub txtAddress_MouseEnter(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseEnter

 'code for handling mouse enter on Address textbox

 txtAddress.BackColor = Color.CornflowerBlue

 txtAddress.ForeColor = Color.White

 End Sub

 Private Sub txtAddress_MouseLeave(sender As Object, e As EventArgs) _

 Handles txtAddress.MouseLeave

 'code for handling mouse leave on Address textbox

 txtAddress.BackColor = Color.White

 txtAddress.ForeColor = Color.Blue

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) _

 Handles Button1.Click

 MsgBox("Thank you " & txtName.Text & ", for your kind cooperation")

 End Sub

End Class

When the above code is executed and run using Start button available at the Microsoft

Visual Studio tool bar, it will show the following window −

Department of CSE Page 29 of 63

Try to enter text in the text boxes and check the mouse events −

Handling Keyboard Events

Following are the various keyboard events related with a Control class −

 KeyDown − occurs when a key is pressed down and the control has focus

 KeyPress − occurs when a key is pressed and the control has focus

 KeyUp − occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of

type KeyEventArgs. This object has the following properties −

 Alt − it indicates whether the ALT key is pressed

 Control − it indicates whether the CTRL key is pressed

 Handled − it indicates whether the event is handled

 KeyCode − stores the keyboard code for the event

 KeyData − stores the keyboard data for the event

Department of CSE Page 30 of 63

 KeyValue − stores the keyboard value for the event

 Modifiers − it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift − it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of

type KeyEventArgs. This object has the following properties −

 Handled − indicates if the KeyPress event is handled

 KeyChar − stores the character corresponding to the key pressed

Example

Let us continue with the previous example to show how to handle keyboard events. The code

will verify that the user enters some numbers for his customer ID and age.

 Add a label with text Property as 'Age' and add a corresponding text box named

txtAge.

 Add the following codes for handling the KeyUP events of the text box txtID.

Private Sub txtID_KeyUP(sender As Object, e As KeyEventArgs) _

 Handles txtID.KeyUp

 If (Not Char.IsNumber(ChrW(e.KeyCode))) Then

 MessageBox.Show("Enter numbers for your Customer ID")

 txtID.Text = " "

 End If

End Sub

 Add the following codes for handling the KeyUP events of the text box txtID.

Private Sub txtAge_KeyUP(sender As Object, e As KeyEventArgs) _

 Handles txtAge.KeyUp

 If (Not Char.IsNumber(ChrW(e.keyCode))) Then

 MessageBox.Show("Enter numbers for age")

 txtAge.Text = " "

 End If

End Sub

When the above code is executed and run using Start button available at the Microsoft

Visual Studio tool bar, it will show the following window −

Department of CSE Page 31 of 63

If you leave the text for age or ID as blank or enter some non-numeric data, it gives a warning

message box and clears the respective text –

Java Adapter Classes

Java adapter classes provide the default implementation of listener interfaces

. If you inherit the adapter class, you will not be forced to provide the implementation of all

the methods of listener interfaces. So it saves code.

Pros of using Adapter classes:

o It assists the unrelated classes to work combinedly.

o It provides ways to use classes in different ways.

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/interface-in-java

Department of CSE Page 32 of 63

o It increases the transparency of classes.

o It provides a way to include related patterns in the class.

o It provides a pluggable kit for developing an application.

o It increases the reusability of the class.

The adapter classes are found in java.awt.event,

java.awt.dnd and javax.swing.event packages

. The Adapter classes with their corresponding listener interfaces are given below.

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

HierarchyBoundsAdapter HierarchyBoundsListener

java.awt.dnd Adapter classes

Adapter class Listener interface

https://www.javatpoint.com/package
https://www.javatpoint.com/package
https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mousemotionlistener
https://www.javatpoint.com/java-mousemotionlistener

Department of CSE Page 33 of 63

DragSourceAdapter DragSourceListener

DragTargetAdapter DragTargetListener

javax.swing.event Adapter classes

Adapter class Listener interface

MouseInputAdapter MouseInputListener

InternalFrameAdapter InternalFrameListener

Java WindowAdapter Example

In the following example, we are implementing the WindowAdapter class of AWT and one

its methods windowClosing() to close the frame window.

AdapterExample.java

16.3M

211

// importing the necessary libraries

import java.awt.*;

import java.awt.event.*;

public class AdapterExample {

// object of Frame

 Frame f;

// class constructor

 AdapterExample() {

https://www.javatpoint.com/java-adapter-classes
https://www.javatpoint.com/java-adapter-classes
https://www.javatpoint.com/java-adapter-classes
https://www.javatpoint.com/java-adapter-classes
https://www.javatpoint.com/java-adapter-classes
https://www.javatpoint.com/java-adapter-classes

Department of CSE Page 34 of 63

// creating a frame with the title

 f = new Frame ("Window Adapter");

// adding the WindowListener to the frame

// overriding the windowClosing() method

 f.addWindowListener (new WindowAdapter() {

 public void windowClosing (WindowEvent e) {

 f.dispose();

 }

 });

 // setting the size, layout and

 f.setSize (400, 400); f.setLayout (null);

 f.setVisible (true);

 }

// main method

public static void main(String[] args) {

 new AdapterExample();

}

}

Output:

Department of CSE Page 35 of 63

Java Inner Classes (Nested Classes)

Java inner class or nested class is a class that is declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place to be more

readable and maintainable.

Additionally, it can access all the members of the outer class, including private data members

and methods.

Syntax of Inner class

class Java_Outer_class{

 //code

 class Java_Inner_class{

 //code

 }

}

Advantage of Java inner classes

There are three advantages of inner classes in Java. They are as follows:

1. Nested classes represent a particular type of relationship that is it can access all the

members (data members and methods) of the outer class, including private.

2. Nested classes are used to develop more readable and maintainable code because it

logically group classes and interfaces in one place only.

3. Code Optimization: It requires less code to write.

Java Anonymous inner class

Java anonymous inner class is an inner class without a name and for which only a single

object is created. An anonymous inner class can be useful when making an instance of an

object with certain "extras" such as overloading methods of a class or interface, without

having to actually subclass a class.

https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class
https://www.javatpoint.com/java-inner-class

Department of CSE Page 36 of 63

In simple words, a class that has no name is known as an anonymous inner class in Java. It

should be used if you have to override a method of class or interface. Java Anonymous inner

class can be created in two ways:

1. Class (may be abstract or concrete).

2. Interface

Java anonymous inner class example using class

TestAnonymousInner.java

abstract class Person{

 abstract void eat();

}

class TestAnonymousInner{

 public static void main(String args[]){

 Person p=new Person(){

 void eat(){System.out.println("nice fruits");}

 };

 p.eat();

 }

}

Output:

39.4M

696

nice fruits

A Simple Swing Application, Applets

https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class
https://www.javatpoint.com/anonymous-inner-class

Department of CSE Page 37 of 63

Java Applet

Applet is a special type of program that is embedded in the webpage to generate the dynamic

content. It runs inside the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

o It works at client side so less response time.

o Secured

o It can be executed by browsers running under many plateforms, including Linux,

Windows, Mac Os etc.

Drawback of Applet

o Plugin is required at client browser to execute applet.

Hierarchy of Applet

As displayed in the above diagram, Applet class extends Panel. Panel class extends Container which is the subclass of

Department of CSE Page 38 of 63

Component.

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1

life cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited. It provides 4 life cycle

methods of applet.

1. public void init(): is used to initialized the Applet. It is invoked only once.

Department of CSE Page 39 of 63

2. public void start(): is invoked after the init() method or browser is maximized. It is

used to start the Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is stop or

browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.

1. public void paint(Graphics g): is used to paint the Applet. It provides Graphics class

object that can be used for drawing oval, rectangle, arc etc.

How to run an Applet?

There are two ways to run an applet

1. By html file.

2. By appletViewer tool (for testing purpose).

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that create an html

file and place the applet code in html file. Now click the html file.

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet{

public void paint(Graphics g){

g.drawString("welcome",150,150);

}

}

Department of CSE Page 40 of 63

Java applets and applications

Last Updated: 2021-03-08

An applet is a Java™ program designed to be included in an HTML Web document. You can

write your Java applet and include it in an HTML page, much in the same way an image is

included. When you use a Java-enabled browser to view an HTML page that contains an

applet, the applet's code is transferred to your system and is run by the browser's Java virtual

machine.

The HTML document contains tags, which specify the name of the Java applet and its

Uniform Resource Locator (URL). The URL is the location at which the applet bytecodes

reside on the Internet. When an HTML document containing a Java applet tag is displayed, a

Java-enabled Web browser downloads the Java bytecodes from the Internet and uses the Java

virtual machine to process the code from within the Web document. These Java applets are

what enable Web pages to contain animated graphics or interactive content.

You can also write a Java application that does not require the use of a Web browser.

For more information, see Writing Applets, Sun Microsystems' tutorial for Java applets. It

includes an overview of applets, directions for writing applets, and some common applet

problems.

Applications are stand-alone programs that do not require the use of a browser. Java

applications run by starting the Java interpreter from the command line and by specifying the

file that contains the compiled application. Applications usually reside on the system on

which they are deployed. Applications access resources on the system, and are restricted by

the Java security model.

Parameters passed to an applet

Steps to accomplish this task -:

 To pass the parameters to the Applet we need to use the param attribute of <applet> tag.

 To retrieve a parameter's value, we need to use the getParameter() method

of Applet class.

Signature of the getParamter() method

public String getParameter(String name)

 Method takes a String argument name, which represents the name of the parameter which

was specified with the param attribute in the <applet> tag.

 Method returns the value of the name parameter(if it was defined) else null is returned.

 Passing parameters to an applet.

https://www.ibm.com/links?url=http%3A%2F%2Fdownload.oracle.com%2Fjavase%2Ftutorial%2Fdeployment%2Fapplet%2F
https://www.ibm.com/docs/en/ssw_ibm_i_71/rzaha/securmod.htm

Department of CSE Page 41 of 63

o In the upcoming code, we are going to pass a few parameters like Name, Age, Sport,

Food, Fruit, Destination to the applet using param attribute in <applet>

o Next, we will retrieve the values of these parameters using getParameter() method of

Applet class.

import java.awt.*;

import java.applet.*;

/*

<applet code="Applet8" width="400" height="200">

<param name="Name" value="Roger">

<param name="Age" value="26">

<param name="Sport" value="Tennis">

<param name="Food" value="Pasta">

<param name="Fruit" value="Apple">

<param name="Destination" value="California">

</applet>

*/

public class Applet8 extends Applet

{

String name;

String age;

String sport;

String food;

String fruit;

String destination;

public void init()

{

name = getParameter("Name");

age = getParameter("Age");

food = getParameter("Food");

fruit = getParameter("Fruit");

destination = getParameter("Destination");

sport = getParameter("Sport");

}

Department of CSE Page 42 of 63

public void paint(Graphics g)

{

g.drawString("Reading parameters passed to this applet -", 20, 20);

g.drawString("Name -" + name, 20, 40);

g.drawString("Age -" + age, 20, 60);

g.drawString("Favorite fruit -" + fruit, 20, 80);

g.drawString("Favorite food -" + food, 20, 100);

g.drawString("Favorite destination -" + name, 20, 120);

g.drawString("Favorite sport -" + sport, 20, 140);

}

}

Output

In order to run our applet using the appletviewer, type the following command at the

command prompt-

appletviewer Applet8.java

JApplet class in Applet

As we prefer Swing to AWT. Now we can use JApplet that can have all the controls of swing. The JApplet class

extends the Applet class.

Example of EventHandling in JApplet:

import java.applet.*;

import javax.swing.*;

import java.awt.event.*;

https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet

Department of CSE Page 43 of 63

public class EventJApplet extends JApplet implements ActionListener{

JButton b;

JTextField tf;

public void init(){

tf=new JTextField();

tf.setBounds(30,40,150,20);

b=new JButton("Click");

b.setBounds(80,150,70,40);

add(b);add(tf);

b.addActionListener(this);

setLayout(null);

}

public void actionPerformed(ActionEvent e){

tf.setText("Welcome");

}

}

In the above example, we have created all the controls in init() method because it is

invoked only once.

myapplet.html

<html>

<body>

https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet
https://www.javatpoint.com/JApplet

Department of CSE Page 44 of 63

<applet code="EventJApplet.class" width="300" height="300">

</applet>

</body>

</html>

Painting in Applet

We can perform painting operation in applet by the mouseDragged() method of MouseMotionListener.

Example of Painting in Applet:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

public class MouseDrag extends Applet implements MouseMotionListener{

public void init(){

addMouseMotionListener(this);

setBackground(Color.red);

}

public void mouseDragged(MouseEvent me){

Graphics g=getGraphics();

g.setColor(Color.white);

g.fillOval(me.getX(),me.getY(),5,5);

}

public void mouseMoved(MouseEvent me){}

}

In the above example, getX() and getY() method of MouseEvent is used to get the current x-axis and y-axis. The

getGraphics() method of Component class returns the object of Graphics.

myapplet.html

Department of CSE Page 45 of 63

<html>

<body>

<applet code="MouseDrag.class" width="300" height="300">

</applet>

</body>

</html>

A Paint example

// Paint lines to a panel.
import java.awt.Graphics;

import java.awt.Insets;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.SwingUtilities;

// This class extends JPanel. It overrides

// the paintComponent() method so that random

// lines are plotted in the panel.
class PaintPanel extends JPanel {

 Insets ins; // holds the panel's insets

 // Construct a panel.

 PaintPanel() {// w w w . d e m o2 s . c o m

 }

 // Override the paintComponent() method.
 protected void paintComponent(Graphics g) {

 // Always call the superclass method first.
 super.paintComponent(g);

 int x, y, x2, y2;

 // Get the height and width of the component.

 int height = getHeight();

 int width = getWidth();

 // Get the insets.

 ins = getInsets();

 x = width - ins.left;

 y = height - ins.bottom;

 x2 = width - ins.left;

 y2 = height - ins.bottom;

 // Draw the line.
 g.drawLine(x-10, y-10, 100, 100);

 }

}

Department of CSE Page 46 of 63

// Demonstrate painting directly onto a panel.
public class Main {

 // Create the panel that will be painted.

 PaintPanel pp = new PaintPanel();

 Main() {

 JFrame jfrm = new JFrame("Paint Demo");

 jfrm.setSize(200, 150);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 jfrm.add(pp);

 // Display the frame.

 jfrm.setVisible(true);

 }

 public static void main(String args[]) {

 // Create the frame on the event dispatching thread.

 SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 new Main();

 }

 });

 }

}

Java JLabel

The object of JLabel class is a component for placing text in a container. It is used to display

a single line of read only text. The text can be changed by an application but a user cannot

edit it directly. It inherits JComponent class.

JLabel class declaration

Let's see the declaration for javax.swing.JLabel class

public class JLabel extends JComponent implements SwingConstants, Accessible

Java JLabel Example

import javax.swing.*;

class LabelExample

{

https://www.javatpoint.com/java-jlabel
https://www.javatpoint.com/java-jlabel
https://www.javatpoint.com/java-jlabel
https://www.javatpoint.com/java-jlabel
https://www.javatpoint.com/java-jlabel
https://www.javatpoint.com/java-jlabel

Department of CSE Page 47 of 63

public static void main(String args[])

 {

 JFrame f= new JFrame("Label Example");

 JLabel l1,l2;

 l1=new JLabel("First Label.");

 l1.setBounds(50,50, 100,30);

 l2=new JLabel("Second Label.");

 l2.setBounds(50,100, 100,30);

 f.add(l1); f.add(l2);

 f.setSize(300,300);

 f.setLayout(null);

 f.setVisible(true);

 }

 }

Output:

Java JTextField

The object of a JTextField class is a text component that allows the editing of a single line

text. It inherits JTextComponent class.

JTextField class declaration

Let's see the declaration for javax.swing.JTextField class.

Department of CSE Page 48 of 63

public class JTextField extends JTextComponent implements SwingConstants

Java JTextField Example

import javax.swing.*;

class TextFieldExample

{

public static void main(String args[])

 {

 JFrame f= new JFrame("TextField Example");

 JTextField t1,t2;

 t1=new JTextField("Welcome to Javatpoint.");

 t1.setBounds(50,100, 200,30);

 t2=new JTextField("AWT Tutorial");

 t2.setBounds(50,150, 200,30);

 f.add(t1); f.add(t2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

 }

Output:

Department of CSE Page 49 of 63

Java JButton

The JButton class is used to create a labeled button that has platform independent

implementation. The application result in some action when the button is pushed. It inherits

AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

public class JButton extends AbstractButton implements Accessible

Java JButton Example

import javax.swing.*;

public class ButtonExample {

public static void main(String[] args) {

 JFrame f=new JFrame("Button Example");

 JButton b=new JButton("Click Here");

 b.setBounds(50,100,95,30);

 f.add(b);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

}

Department of CSE Page 50 of 63

Output:

public class JButton extends AbstractButton implements Accessible

Java JToggleButton

JToggleButton is used to create toggle button, it is two-states button to switch on or off.

JToggleButton Example

import java.awt.FlowLayout;

import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

import javax.swing.JFrame;

import javax.swing.JToggleButton;

public class JToggleButtonExample extends JFrame implements ItemListener {

 public static void main(String[] args) {

 new JToggleButtonExample();

 }

 private JToggleButton button;

 JToggleButtonExample() {

https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-jtogglebutton

Department of CSE Page 51 of 63

 setTitle("JToggleButton with ItemListener Example");

 setLayout(new FlowLayout());

 setJToggleButton();

 setAction();

 setSize(200, 200);

 setVisible(true);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 }

 private void setJToggleButton() {

 button = new JToggleButton("ON");

 add(button);

 }

 private void setAction() {

 button.addItemListener(this);

 }

 public void itemStateChanged(ItemEvent eve) {

 if (button.isSelected())

 button.setText("OFF");

 else

 button.setText("ON");

 }

}

Output

Department of CSE Page 52 of 63

Java JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on (true) or off

(false). Clicking on a CheckBox changes its state from "on" to "off" or from "off" to "on ".It

inherits JToggleButton

class.

JCheckBox class declaration

Let's see the declaration for javax.swing.JCheckBox class.

public class JCheckBox extends JToggleButton implements Accessible

Java JCheckBox Example

import javax.swing.*;

public class CheckBoxExample

{

 CheckBoxExample(){

 JFrame f= new JFrame("CheckBox Example");

 JCheckBox checkBox1 = new JCheckBox("C++");

 checkBox1.setBounds(100,100, 50,50);

 JCheckBox checkBox2 = new JCheckBox("Java", true);

 checkBox2.setBounds(100,150, 50,50);

 f.add(checkBox1);

 f.add(checkBox2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

public static void main(String args[])

 {

 new CheckBoxExample();

 }}

Output:

https://www.javatpoint.com/java-jtogglebutton
https://www.javatpoint.com/java-jtogglebutton

Department of CSE Page 53 of 63

Next →← Prev

Java JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one option from

multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration

Let's see the declaration for javax.swing.JRadioButton class.

public class JRadioButton extends JToggleButton implements Accessible

Java JRadioButton Example

import javax.swing.*;

public class RadioButtonExample {

JFrame f;

RadioButtonExample(){

f=new JFrame();

JRadioButton r1=new JRadioButton("A) Male");

JRadioButton r2=new JRadioButton("B) Female");

r1.setBounds(75,50,100,30);

r2.setBounds(75,100,100,30);

https://www.javatpoint.com/java-jcombobox
https://www.javatpoint.com/java-jcombobox
https://www.javatpoint.com/java-jpopupmenu

Department of CSE Page 54 of 63

ButtonGroup bg=new ButtonGroup();

bg.add(r1);bg.add(r2);

f.add(r1);f.add(r2);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String[] args) {

 new RadioButtonExample();

}

}

Output:

Swing JTabbedPane :

We can see the tabbed pane in windows operating by opening the system properties like

below.

Department of CSE Page 55 of 63

Java JScrollPane

A JscrollPane is used to make scrollable view of a component. When screen size is limited,

we use a scroll pane to display a large component or a component whose size can change

dynamically.

JScrollPane Example

import java.awt.FlowLayout;

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JtextArea;

public class JScrollPaneExample {

 private static final long serialVersionUID = 1L;

 private static void createAndShowGUI() {

Department of CSE Page 56 of 63

 // Create and set up the window.

 final JFrame frame = new JFrame("Scroll Pane Example");

 // Display the window.

 frame.setSize(500, 500);

 frame.setVisible(true);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // set flow layout for the frame

 frame.getContentPane().setLayout(new FlowLayout());

 JTextArea textArea = new JTextArea(20, 20);

 JScrollPane scrollableTextArea = new JScrollPane(textArea);

 scrollableTextArea.setHorizontalScrollBarPolicy(JScrollPane.HORIZONTAL_SCROL

LBAR_ALWAYS);

 scrollableTextArea.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR

_ALWAYS);

 frame.getContentPane().add(scrollableTextArea);

 }

 public static void main(String[] args) {

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 createAndShowGUI();

 }

 });

 }

}

Department of CSE Page 57 of 63

Output:

Java JList

The object of JList class represents a list of text items. The list of text items can be set up so

that the user can choose either one item or multiple items. It inherits JComponent class.

JList class declaration

Let's see the declaration for javax.swing.JList class.

public class JList extends JComponent implements Scrollable, Accessible

Java JList Example

import javax.swing.*;

public class ListExample

{

 ListExample(){

 JFrame f= new JFrame();

 DefaultListModel<String> l1 = new DefaultListModel<>();

 l1.addElement("Item1");

 l1.addElement("Item2");

 l1.addElement("Item3");

 l1.addElement("Item4");

 JList<String> list = new JList<>(l1);

 list.setBounds(100,100, 75,75);

Department of CSE Page 58 of 63

 f.add(list);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

public static void main(String args[])

 {

 new ListExample();

 }}

Output:

Java JComboBox

The object of Choice class is used to show popup menu of choices. Choice selected by user is

shown on the top of a menu. It inherits JComponent class.

JComboBox class declaration

Let's see the declaration for javax.swing.JComboBox class.

public class JComboBox extends JComponent implements ItemSelectable, ListDataListener

, Action

Java JComboBox Example

import javax.swing.*;

https://www.javatpoint.com/java-jmenuitem-and-jmenu
https://www.javatpoint.com/java-jcomponent

Department of CSE Page 59 of 63

public class ComboBoxExample {

JFrame f;

ComboBoxExample(){

 f=new JFrame("ComboBox Example");

 String country[]={"India","Aus","U.S.A","England","Newzealand"};

 JComboBox cb=new JComboBox(country);

 cb.setBounds(50, 50,90,20);

 f.add(cb);

 f.setLayout(null);

 f.setSize(400,500);

 f.setVisible(true);

}

public static void main(String[] args) {

 new ComboBoxExample();

}

}

Output:

 JMenuBar, JMenu and JMenuItem

The JMenuBar class is used to display menubar on the window or frame. It may have several

menus.

Department of CSE Page 60 of 63

The object of JMenu class is a pull down menu component which is displayed from the menu

bar. It inherits the JMenuItem class.

The object of JMenuItem class adds a simple labeled menu item. The items used in a menu

must belong to the JMenuItem or any of its subclass.

JMenuBar class declaration

public class JMenuBar extends JComponent implements MenuElement, Accessible

JMenu class declaration

public class JMenu extends JMenuItem implements MenuElement, Accessible

JMenuItem class declaration

public class JMenuItem extends AbstractButton implements Accessible, MenuElement

Java JMenuItem and JMenu Example

import javax.swing.*;

class MenuExample

{

 JMenu menu, submenu;

 JMenuItem i1, i2, i3, i4, i5;

 MenuExample(){

 JFrame f= new JFrame("Menu and MenuItem Example");

 JMenuBar mb=new JMenuBar();

 menu=new JMenu("Menu");

 submenu=new JMenu("Sub Menu");

 i1=new JMenuItem("Item 1");

 i2=new JMenuItem("Item 2");

 i3=new JMenuItem("Item 3");

 i4=new JMenuItem("Item 4");

 i5=new JMenuItem("Item 5");

 menu.add(i1); menu.add(i2); menu.add(i3);

 submenu.add(i4); submenu.add(i5);

 menu.add(submenu);

Department of CSE Page 61 of 63

 mb.add(menu);

 f.setJMenuBar(mb);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

public static void main(String args[])

{

new MenuExample();

}}

Output:

Java JDialog

The JDialog control represents a top level window with a border and a title used to take some

form of input from the user. It inherits the Dialog class.

Unlike JFrame, it doesn't have maximize and minimize buttons.

JDialog class declaration

Let's see the declaration for javax.swing.JDialog class.

1. public class JDialog extends Dialog implements WindowConstants, Accessible, RootPaneC

ontainer

Department of CSE Page 62 of 63

Java JDialog Example

1. import javax.swing.*;

2. import java.awt.*;

3. import java.awt.event.*;

4. public class DialogExample {

5. private static JDialog d;

6. DialogExample() {

7. JFrame f= new JFrame();

8. d = new JDialog(f , "Dialog Example", true);

9. d.setLayout(new FlowLayout());

10. JButton b = new JButton ("OK");

11. b.addActionListener (new ActionListener()

12. {

13. public void actionPerformed(ActionEvent e)

14. {

15. DialogExample.d.setVisible(false);

16. }

17. });

18. d.add(new JLabel ("Click button to continue."));

19. d.add(b);

20. d.setSize(300,300);

21. d.setVisible(true);

22. }

23. public static void main(String args[])

24. {

25. new DialogExample();

26. }

27. }

Output:

Department of CSE Page 63 of 63

2.

	Java LayoutManagers
	Java BorderLayout
	Constructors of BorderLayout class:
	Example of BorderLayout class: Using BorderLayout() constructor
	Example of BorderLayout class: Using BorderLayout(int hgap, int vgap) constructor
	Java BorderLayout: Without Specifying Region
	Java GridLayout
	Constructors of GridLayout class
	Example of GridLayout class: Using GridLayout() Constructor
	Fields of FlowLayout class
	Constructors of FlowLayout class
	Example of FlowLayout class: Using FlowLayout() constructor

	Java CardLayout
	Constructors of CardLayout Class
	Commonly Used Methods of CardLayout Class
	Example of CardLayout Class: Using Default Constructor

	Java GridBagLayout
	Constructor
	GridBagLayout Methods
	Example 1

	Delegation Event Model in Java
	Event Processing in Java
	Events
	Event Sources
	Event Listeners

	Types of Events
	Handling Mouse Events
	Example
	Handling Keyboard Events
	Example (1)

	Java Adapter Classes
	Pros of using Adapter classes:
	java.awt.event Adapter classes
	java.awt.dnd Adapter classes
	javax.swing.event Adapter classes
	Java WindowAdapter Example

	Java Inner Classes (Nested Classes)
	Syntax of Inner class
	Advantage of Java inner classes

	Java Anonymous inner class
	Java anonymous inner class example using class

	Java Applet
	Advantage of Applet
	Drawback of Applet
	Hierarchy of Applet
	Lifecycle of Java Applet
	Lifecycle methods for Applet:
	java.applet.Applet class
	java.awt.Component class
	How to run an Applet?
	Simple example of Applet by html file:

	Java applets and applications
	Parameters passed to an applet
	Signature of the getParamter() method
	 Passing parameters to an applet.
	Output

	JApplet class in Applet
	Example of EventHandling in JApplet:
	myapplet.html

	Painting in Applet
	Example of Painting in Applet:
	myapplet.html

	Java JLabel
	JLabel class declaration
	Java JLabel Example

	Java JTextField
	JTextField class declaration
	Java JTextField Example

	Java JButton
	JButton class declaration
	Java JButton Example

	Java JToggleButton
	JToggleButton Example

	Java JCheckBox
	JCheckBox class declaration
	Java JCheckBox Example

	Java JRadioButton
	JRadioButton class declaration
	Java JRadioButton Example
	Swing JTabbedPane :

	Java JScrollPane
	JScrollPane Example

	Java JList
	JList class declaration
	Java JList Example

	Java JComboBox
	JComboBox class declaration
	Java JComboBox Example
	JMenuBar class declaration
	JMenu class declaration
	JMenuItem class declaration

	Java JMenuItem and JMenu Example

	Java JDialog
	JDialog class declaration
	Java JDialog Example

